Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Radiology ; 311(2): e232178, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38742970

RESUMEN

Background Accurate characterization of suspicious small renal masses is crucial for optimized management. Deep learning (DL) algorithms may assist with this effort. Purpose To develop and validate a DL algorithm for identifying benign small renal masses at contrast-enhanced multiphase CT. Materials and Methods Surgically resected renal masses measuring 3 cm or less in diameter at contrast-enhanced CT were included. The DL algorithm was developed by using retrospective data from one hospital between 2009 and 2021, with patients randomly allocated in a training and internal test set ratio of 8:2. Between 2013 and 2021, external testing was performed on data from five independent hospitals. A prospective test set was obtained between 2021 and 2022 from one hospital. Algorithm performance was evaluated by using the area under the receiver operating characteristic curve (AUC) and compared with the results of seven clinicians using the DeLong test. Results A total of 1703 patients (mean age, 56 years ± 12 [SD]; 619 female) with a single renal mass per patient were evaluated. The retrospective data set included 1063 lesions (874 in training set, 189 internal test set); the multicenter external test set included 537 lesions (12.3%, 66 benign) with 89 subcentimeter (≤1 cm) lesions (16.6%); and the prospective test set included 103 lesions (13.6%, 14 benign) with 20 (19.4%) subcentimeter lesions. The DL algorithm performance was comparable with that of urological radiologists: for the external test set, AUC was 0.80 (95% CI: 0.75, 0.85) versus 0.84 (95% CI: 0.78, 0.88) (P = .61); for the prospective test set, AUC was 0.87 (95% CI: 0.79, 0.93) versus 0.92 (95% CI: 0.86, 0.96) (P = .70). For subcentimeter lesions in the external test set, the algorithm and urological radiologists had similar AUC of 0.74 (95% CI: 0.63, 0.83) and 0.81 (95% CI: 0.68, 0.92) (P = .78), respectively. Conclusion The multiphase CT-based DL algorithm showed comparable performance with that of radiologists for identifying benign small renal masses, including lesions of 1 cm or less. Published under a CC BY 4.0 license. Supplemental material is available for this article.


Asunto(s)
Medios de Contraste , Aprendizaje Profundo , Neoplasias Renales , Tomografía Computarizada por Rayos X , Humanos , Femenino , Masculino , Persona de Mediana Edad , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Estudios Prospectivos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Anciano , Algoritmos , Riñón/diagnóstico por imagen , Adulto
2.
Chem Soc Rev ; 53(9): 4312-4332, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38596903

RESUMEN

Aqueous zinc (Zn) batteries have attracted global attention for energy storage. Despite significant progress in advancing Zn anode materials, there has been little progress in cathodes. The predominant cathodes working with Zn2+/H+ intercalation, however, exhibit drawbacks, including a high Zn2+ diffusion energy barrier, pH fluctuation(s) and limited reproducibility. Beyond Zn2+ intercalation, alternative working principles have been reported that broaden cathode options, including conversion, hybrid, anion insertion and deposition/dissolution. In this review, we report a critical assessment of non-intercalation-type cathode materials in aqueous Zn batteries, and identify strengths and weaknesses of these cathodes in small-scale batteries, together with current strategies to boost material performance. We assess the technical gap(s) in transitioning these cathodes from laboratory-scale research to industrial-scale battery applications. We conclude that S, I2 and Br2 electrodes exhibit practically promising commercial prospects, and future research is directed to optimizing cathodes. Findings will be useful for researchers and manufacturers in advancing cathodes for aqueous Zn batteries beyond Zn2+ intercalation.

3.
RSC Adv ; 14(10): 6805-6814, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38405068

RESUMEN

Despite the many studies carried out over the past decade to determine the biodegradation performance of magnesium and its alloys, few studies focused on the effect of altered surface area to volume ratio on in vitro and in vivo degradation rate and osteogenesis. Here, high purity magnesium cylindrical rods with gradient of surface area to volume ratio were processed by excavating different numbers of grooves on the side surface. The immersion test in SBF solution and the rat femoral condylar bone defect model were used to evaluate the degradation of magnesium rods in vitro and in vivo, respectively. We demonstrated that, the increased number of grooves on the HP magnesium surface represented a decrease in the percentage of residual volume over time, not necessarily an increase in absolute degradation volume or a regular change in corrosion rate. Furthermore, there were strong linear correlations between the relative degradation volume and the initial surface-to-volume ratio of HP magnesium rods both in vitro and in vivo. The difference in the slope of this relationship in vitro and in vivo might help to determine the possible range of in vivo degradation rates via in vitro data. In addition, the corrosion rate is more suitable for evaluating bone formation surrounding the different HP magnesium rods. Our findings in this work may facilitate adjusting the in vivo degradation and osteogenesis of different kinds of orthopedic implants made of the same magnesium-based material, and thus, accelerate the clinical popularization and application.

4.
Nat Nanotechnol ; 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366224

RESUMEN

The activity of electrocatalysts for the sulfur reduction reaction (SRR) can be represented using volcano plots, which describe specific thermodynamic trends. However, a kinetic trend that describes the SRR at high current rates is not yet available, limiting our understanding of kinetics variations and hindering the development of high-power Li||S batteries. Here, using Le Chatelier's principle as a guideline, we establish an SRR kinetic trend that correlates polysulfide concentrations with kinetic currents. Synchrotron X-ray adsorption spectroscopy measurements and molecular orbital computations reveal the role of orbital occupancy in transition metal-based catalysts in determining polysulfide concentrations and thus SRR kinetic predictions. Using the kinetic trend, we design a nanocomposite electrocatalyst that comprises a carbon material and CoZn clusters. When the electrocatalyst is used in a sulfur-based positive electrode (5 mg cm-2 of S loading), the corresponding Li||S coin cell (with an electrolyte:S mass ratio of 4.8) can be cycled for 1,000 cycles at 8 C (that is, 13.4 A gS-1, based on the mass of sulfur) and 25 °C. This cell demonstrates a discharge capacity retention of about 75% (final discharge capacity of 500 mAh gS-1) corresponding to an initial specific power of 26,120 W kgS-1 and specific energy of 1,306 Wh kgS-1.

5.
Chem Sci ; 15(5): 1611-1637, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38303948

RESUMEN

More than 8 billion tons of plastics have been generated since 1950. About 80% of these plastics have been dumped in landfills or went into natural environments, resulting in ever-worsening contamination. Among various strategies for waste plastics processing (e.g., incineration, mechanical recycling, thermochemical conversion and electrocatalytic/photocatalytic techniques), photocatalysis stands out as a cost-effective, environmentally benign and clean technique to upcycle plastic waste at ambient temperature and pressure using solar light. The mild reaction conditions for photocatalysis enable the highly selective conversion of plastic waste into targeted value-added chemicals/fuels. Here, we for the first time summarize the recent development of photocatalytic plastic upcycling based on the chemical composition of photocatalysts (e.g., metal oxides, metal sulfides, non-metals and composites). The pros and cons of various photocatalysts have been critically discussed and summarized. At last, the future challenges and opportunities in this area are presented in this review.

6.
Environ Sci Technol ; 58(3): 1563-1576, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38183415

RESUMEN

Uncertain chemical mechanisms leading to brown carbon (BrC) formation affect the drivers of the radiative effects of aerosols in current climate predictions. Herein, the aqueous-phase reactions of methylglyoxal (MG) and typical reduced nitrogen species (RNSs) are systematically investigated by using combined quantum chemical calculations and laboratory experiments. Imines and diimines are identified from the mixtures of methylamine (MA) and ammonia (AM) with MG, but not from dimethylamine (DA) with the MG mixture under acidic conditions, because deprotonation of DA cationic intermediates is hindered by the amino groups occupied by two methyl groups. It leads to N-heterocycle (NHC) formation in the MG + MA (MGM) and MG + AM (MGA) reaction systems but to N-containing chain oligomer formation in the MG + DA (MGD) reaction system. Distinct product formation is attributed to electrostatic attraction and steric hindrance, which are regulated by the methyl groups of RNSs. The light absorption and adverse effects of NHCs are also strongly related to the methyl groups of RNSs. Our finding reveals that BrC formation is mainly contributed from MG reaction with RNSs with less methyl groups, which have more abundant and broad sources in the urban environments.


Asunto(s)
Contaminantes Atmosféricos , Dimetilaminas , Piruvaldehído , Carbono , Nitrógeno , Metilaminas , Aerosoles/análisis
7.
J Am Chem Soc ; 146(2): 1619-1626, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38166387

RESUMEN

Operation of rechargeable batteries at ultralow temperature is a significant practical problem because of poor kinetics of the electrode. Here, we report for the first time stabilized multiphase conversions for fast kinetics and long-term durability in ultralow-temperature, organic-sodium batteries. We establish that disodium rhodizonate organic electrode in conjunction with single-layer graphene oxide obviates consumption of organic radical intermediates, and demonstrate as a result that the newly designed organic electrode exhibits excellent electrochemical performance of a highly significant capacity of 130 mAh g-1 at -50 °C. We evidence that the full-cell configuration coupled with Prussian blue analogues exhibits exceptional cycling stability of >7000 cycles at -40 °C while maintaining a discharge capacity of 101 mAh g-1 at a high current density 300 mA g-1. We show this is among the best reported ultralow-temperature performance for nonaqueous batteries, and importantly, the pouch cell exhibits a continuous power supply despite conditions of -50 °C. This work sheds light on the distinct energy storage characteristics of organic electrode and opens up new avenues for the development of reliable and sustainable ultralow-temperature batteries.

8.
Chem Soc Rev ; 53(3): 1552-1591, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38168798

RESUMEN

Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.

9.
Chem Soc Rev ; 53(4): 2022-2055, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38204405

RESUMEN

Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.

10.
Nat Commun ; 15(1): 575, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233408

RESUMEN

Aqueous sodium-ion batteries are practically promising for large-scale energy storage, however energy density and lifespan are limited by water decomposition. Current methods to boost water stability include, expensive fluorine-containing salts to create a solid electrolyte interface and addition of potentially-flammable co-solvents to the electrolyte to reduce water activity. However, these methods significantly increase costs and safety risks. Shifting electrolytes from near neutrality to alkalinity can suppress hydrogen evolution while also initiating oxygen evolution and cathode dissolution. Here, we present an alkaline-type aqueous sodium-ion batteries with Mn-based Prussian blue analogue cathode that exhibits a lifespan of 13,000 cycles at 10 C and high energy density of 88.9 Wh kg-1 at 0.5 C. This is achieved by building a nickel/carbon layer to induce a H3O+-rich local environment near the cathode surface, thereby suppressing oxygen evolution. Concurrently Ni atoms are in-situ embedded into the cathode to boost the durability of batteries.

11.
J Am Chem Soc ; 146(2): 1364-1373, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38082478

RESUMEN

The emerging field of photoredox catalysis in mammalian cells enables spatiotemporal regulation of a wealth of biological processes. However, the selective cleavage of stable covalent bonds driven by low-energy visible light remains a great challenge. Herein, we report that red light excitation of a commercially available dye, abbreviated NMB+, leads to catalytic cleavage of stable azo bonds in both aqueous solutions and hypoxic cells and hence a means to photodeliver drugs or functional molecules. Detailed mechanistic studies reveal that azo bond cleavage is triggered by a previously unknown consecutive two-photon process. The first photon generates a triplet excited state, 3NMB+*, that is reductively quenched by an electron donor to generate a protonated NMBH•+. The NMBH•+ undergoes a disproportionation reaction that yields the initial NMB+ and two-electron-reduced NMBH (i.e., leuco-NMB, abbreviated as LNMB). Interestingly, LNMB forms a charge transfer complex with all four azo substrates that possess an intense absorption band in the red region. A second red photon induces electron transfer from LNMB to the azo substrate, resulting in azo bond cleavage. The charge transfer complex mediated two-photon catalytic mechanism reported herein is reminiscent of the flavin-dependent natural photoenzyme that catalyzes bond cleavage reactions with high-energy photons. The red-light-driven photocatalytic strategy offers a new approach to bioorthogonal azo bond cleavage for photodelivery of drugs or functional molecules.

12.
Adv Mater ; 36(14): e2307913, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37756435

RESUMEN

Hydrogenation reactions play a critical role in the synthesis of value-added products within the chemical industry. Electrocatalytic hydrogenation (ECH) using water as the hydrogen source has emerged as an alternative to conventional thermocatalytic processes for sustainable and decentralized chemical synthesis under mild conditions. Among the various ECH catalysts, copper-based (Cu-based) nanomaterials are promising candidates due to their earth-abundance, unique electronic structure, versatility, and high activity/selectivity. Herein, recent advances in the application of Cu-based catalysts in ECH reactions for the upgrading of valuable chemicals are systematically analyzed. The unique properties of Cu-based catalysts in ECH are initially introduced, followed by design strategies to enhance their activity and selectivity. Then, typical ECH reactions on Cu-based catalysts are presented in detail, including carbon dioxide reduction for multicarbon generation, alkyne-to-alkene conversion, selective aldehyde conversion, ammonia production from nitrogen-containing substances, and amine production from organic nitrogen compounds. In these catalysts, the role of catalyst composition and nanostructures toward different products is focused. The co-hydrogenation of two substrates (e.g., CO2 and NOx n, SO3 2-, etc.) via C─N, C─S, and C─C cross-coupling reactions are also highlighted. Finally, the critical issues and future perspectives of Cu-catalyzed ECH are proposed to accelerate the rational development of next-generation catalysts.

13.
Adv Mater ; 36(1): e2309038, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37970742

RESUMEN

Despite being extensively explored as cathodes in batteries, sulfur (S) can function as a low-potential anode by changing charge carriers in electrolytes. Here, a highly reversible S anode that fully converts from S8 0 to S2- in static aqueous S-I2 batteries by using Na+ as the charge carrier is reported. This S anode exhibits a low potential of -0.5 V (vs standard hydrogen electrode) and a near-to-theoretical capacity of 1404 mA h g-1 . Importantly, it shows significant advantages over the widely used Zn anode in aqueous media by obviating dendrite formation and H2 evolution. To suppress "shuttle effects" faced by both S and I2 electrodes, a scalable sulfonated polysulfone (SPSF) membrane is proposed, which is superior to commercial Nafion in cost (US$1.82 m-2  vs $3500 m-2 ) and environmental benignity. Because of its ultra-high selectivity in blocking polysulfides/iodides, the battery with SPSF displays excellent cycling stability. Even under 100% depth of discharge, the battery demonstrates high capacity retention of 87.6% over 500 cycles, outperforming Zn-I2 batteries with 3.1% capacity under the same conditions. These findings broaden anode options beyond metals for high-energy, low-cost, and fast-chargeable batteries.

14.
Sci Adv ; 9(49): eadk2407, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38064555

RESUMEN

Current chemical recycling of bulk synthetic plastic, polyethylene (PE), operates at high temperature/pressure and yields a complex mixture of products. PE conversion under mild conditions and with good selectivity toward value-added chemicals remains a practical challenge. Here, we demonstrate an atomic engineering strategy to modify a TiO2 photocatalyst with reversible Pd species for the selective conversion of PE to ethylene (C2H4) and propionic acid via dicarboxylic acid intermediates under moderate conditions. TiO2-supported atomically dispersed Pd species exhibits C2H4 evolution of 531.2 µmol gcat-1 hour-1, 408 times that of pristine TiO2. The liquid product is a valuable chemical propanoic acid with 98.8% selectivity. Plastic conversion with a C2 hydrocarbon yield of 0.9% and a propionic acid yield of 6.3% was achieved in oxidation coupled with 3 hours of photoreaction. In situ spectroscopic studies confirm a dual role of atomic Pd species: an electron acceptor to boost charge separation/transfer for efficient photoredox, and a mediator to stabilize reaction intermediates for selective decarboxylation.

15.
Nat Commun ; 14(1): 7295, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957154

RESUMEN

Mutations in SNCA, the gene encoding α-synuclein (αSyn), cause familial Parkinson's disease (PD) and aberrant αSyn is a key pathological hallmark of idiopathic PD. This α-synucleinopathy leads to mitochondrial dysfunction, which may drive dopaminergic neurodegeneration. PARKIN and PINK1, mutated in autosomal recessive PD, regulate the preferential autophagic clearance of dysfunctional mitochondria ("mitophagy") by inducing ubiquitylation of mitochondrial proteins, a process counteracted by deubiquitylation via USP30. Here we show that loss of USP30 in Usp30 knockout mice protects against behavioral deficits and leads to increased mitophagy, decreased phospho-S129 αSyn, and attenuation of SN dopaminergic neuronal loss induced by αSyn. These observations were recapitulated with a potent, selective, brain-penetrant USP30 inhibitor, MTX115325, with good drug-like properties. These data strongly support further study of USP30 inhibition as a potential disease-modifying therapy for PD.


Asunto(s)
Enfermedad de Parkinson , Tioléster Hidrolasas , Animales , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Enfermedad de Parkinson/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Tioléster Hidrolasas/genética
16.
Sci Bull (Beijing) ; 68(23): 2896-2897, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37973462
17.
Sci Adv ; 9(42): eadi7755, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37851797

RESUMEN

The limited availability of freshwater in renewable energy-rich areas has led to the exploration of seawater electrolysis for green hydrogen production. However, the complex composition of seawater presents substantial challenges such as electrode corrosion and electrolyzer failure, calling into question the technological and economic feasibility of direct seawater splitting. Despite many efforts, a comprehensive overview and analysis of seawater electrolysis, including electrochemical fundamentals, materials, and technologies of recent breakthroughs, is still lacking. In this review, we systematically examine recent advances in electrocatalytic seawater splitting and critically evaluate the obstacles to optimizing water supply, materials, and devices for stable hydrogen production from seawater. We demonstrate that robust materials and innovative technologies, especially selective catalysts and high-performance devices, are critical for efficient seawater electrolysis. We then outline and discuss future directions that could advance the techno-economic feasibility of this emerging field, providing a roadmap toward the design and commercialization of materials that can enable efficient, cost-effective, and sustainable seawater electrolysis.

18.
Res Sq ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37886523

RESUMEN

Background: In the present study we assessed the protective effects of a pharmacological approach to stabilize the retromer complex in a PD mouse model. Missense mutations in the VPS35 gene are a rare cause of familial PD. The VPS35 protein is a subunit of the retromer cargo recognition complex and has a variety of functions within neurons, many of which are potentially relevant for the pathophysiology of PD. Prior studies have revealed a role for the retromer complex in controlling accumulation and clearance of α-synuclein aggregates. We previously identified an aminoguanidine hydrazone, 1,3 phenyl bis guanylhydrazone (compound 2a), as a pharmacological stabilizer of the retromer complex that increases retromer subunit protein levels and function. Methods: Here, we validate the efficacy of 2a in protecting against αSynuclein pathology and dopaminergic neuronal degeneration in a PD mouse model generated by unilateral injection of AAV-A53T-αSynuclein in the substantia nigra. Results: Daily intraperitoneal administration of 2a at 10 mg/Kg for 100 days led to robust protection against behavioral deficits, dopaminergic neuronal loss and loss of striatal dopaminergic fibers and striatal monoamines. Treatment with 2a activated αSynuclein degradation pathways in the SN and led to significant reductions in aggregates and pathological αSynuclein. Conclusion: These data suggest retromer stabilization as a promising therapeutic strategy for Parkinson's disease leading to neuroprotection of dopaminergic neurons and rescue in the accumulation of pathological and aggregates αSynuclein. We identified 2a compound as potential clinical drug candidate for future testing in Parkinson's disease patients.

19.
Chem Soc Rev ; 52(22): 7802-7847, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37869994

RESUMEN

To support the global goal of carbon neutrality, numerous efforts have been devoted to the advancement of electrochemical energy conversion (EEC) and electrochemical energy storage (EES) technologies. For these technologies, transition metal dichalcogenide/carbon (TMDC/C) heterostructures have emerged as promising candidates for both electrode materials and electrocatalysts over the past decade, due to their complementary advantages. It is worth noting that interfacial properties play a crucial role in establishing the overall electrochemical characteristics of TMDC/C heterostructures. However, despite the significant scientific contribution in this area, a systematic understanding of TMDC/C heterostructures' interfacial engineering is currently lacking. This literature review aims to focus on three types of interfacial engineering, namely interfacial orientation engineering, interfacial stacking engineering, and interfacial doping engineering, of TMDC/C heterostructures for their potential applications in EES and EEC devices. To accomplish this goal, a combination of experimental and theoretical approaches was used to allow the analysis and summary of the fundamental electrochemical properties and preparation strategies of TMDC/C heterostructures. Moreover, this review highlights the design and utilization of the interfacial engineering of TMDC/C heterostructures for specific EES and EEC devices. Finally, the challenges and opportunities of using interfacial engineering of TMDC/C heterostructures in practical EES and EEC devices are outlined. We expect that this review will effectively guide readers in their understanding, design, and application of interfacial engineering of TMDC/C heterostructures.

20.
Acc Chem Res ; 56(21): 2867-2886, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37882453

RESUMEN

ConspectusC-C single bonds are ubiquitous in organic compounds. The activation and subsequent functionalization of C-C single bonds provide a unique opportunity to synthesize conventionally inaccessible molecules through the rearrangement of carbon skeletons, often with a favorable atom and step economy. However, the C-C bonds are thermodynamically and kinetically inert. Consequently, the activation of C-C bonds is particularly attractive yet challenging in the field of organic chemistry. In the past decade, we sought to develop efficient strategies to carry out transition-metal-catalyzed diverse C-C cleavage/C-C forming reactions and to obtain some insights into the intrinsic reactivities of different C-C bonds. With our efforts, readily available alcohols, carboxylic acids, and ketones served as suitable substrates for the catalytic C-C coupling reactions, which are reviewed in this Account. In 2009, we observed a Ni-catalyzed cross coupling of aryl nitriles with arylboronic esters through C-CN cleavage. Encouraged by these results, we are interested in transition-metal-catalyzed C-C bond activation. Due to their broad availability, we then turned our attention to C-C cleavage of carboxylic acids. Rhodium-catalyzed decarbonylative coupling of carboxylic acids with (hetero)arenes was then achieved through oxidative addition of in situ formed, more reactive mixed anhydrides to Rh(I) without the need for oxidants that are commonly required for the decarboxylative coupling of carboxylic acids. Subsequently, the decarbonylation of more challenging unstrained aryl ketones was realized under Rh catalysis assisted by N-containing directing groups. Following this work, a group exchange of aryl ketones with carboxylic acids was achieved through 2-fold C-C bond cleavage. By employing the chelation strategy, Rh-catalyzed C-C bond activation of secondary benzyl alcohols was also accomplished through ß-carbon elimination of the rhodium alcoholate intermediates. The competing oxidation of secondary alcohols to ketones via ß-hydrogen elimination of the same intermediates was suppressed as thermodynamically favorable five-membered rhodacycles are formed after ß-carbon elimination. Different types of transformations of alcohols, including the Heck-type reaction with alkenes, cross coupling with arylsilanes, and Grignard-type addition with aldehydes or imines, have been achieved, showing the great potential of secondary alcohols in the formation of C-C bonds. These C-C bond-forming reactions are complementary to traditional cross couplings of aryl halides with organometallic reagents. However, these transformations produce small molecules as byproducts. To improve the atom economy, we then investigated C-C bond transformations of strained-ring cyclic compounds. Ni-catalyzed intermolecular cyclization of benzocyclobutenones with alkynes was recently achieved via the uncommon cleavage of the C1-C8 bond by employing a removable blocking strategy. Rh-catalyzed intramolecular annulation of benzocyclobutenols with alkynes was also achieved. In summary, our developments demonstrate the great potential of transition-metal-catalyzed C-C bond activation for the formation of new C-C bonds. To further expand the synthetic utility of C-C bond activation, more efforts are required to expand the substrate scope and to achieve earth-abundant metal-catalyzed transformations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...